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In this paper, we present relationships between the intrinsic radial distribution
function (RDF) for a three-dimensional, isotropic system of particles and the lower-
dimensional RDFs obtained experimentally from either two-dimensional or one-
dimensional sampling of the data. The lower-dimensional RDFs are shown to be
equivalent to integrals of the three-dimensional function, and as such contain less
information than their three-dimensional counterpart. An important consequence is
that the lower-dimensional RDFs are attenuated at separation distances below the
characteristic length scale of the measurement. In addition, the inverse problem (cal-
culating the three-dimensional RDF from the lower-dimensional measurements) is
not well posed. However, recent results from direct numerical simulations (Reade
& Collins 2000) showed that the three-dimensional RDF for aerosol particles in a
turbulent flow field obeys a power-law dependence on r for r � η, where η is the
Kolmogorov scale of the turbulence. In this case, the inverse problem is well posed
and it is possible to obtain the prefactor and exponent of the power law from one-
or two-dimensional measurements. A procedure for inverting the data is given. All
of the relationships derived in this paper have been validated by data derived from
direct numerical simulations.

1. Introduction
Heavy particles in a turbulent flow field tend to cluster in high-strain regions of

the flow due to a ‘centrifuge’ effect of the vorticity (Squires & Eaton 1991; Wang &
Maxey 1993). This clustering can lead to superconcentrations of particles that are
orders of magnitude greater than the average concentration of particles. Sundaram &
Collins (1997) showed that particle clustering modifies the collision kernel by a factor
equal to the radial distribution function (RDF) evaluated at particle contact. Recent
numerical studies of turbulent coagulation of finite-inertia particles have focused on
measuring the RDF (Reade & Collins 2000a, b; Wang, Wexler & Zhou 2000).

Experimental measurement of the RDF of solid particles at low Reynolds numbers
has recently been accomplished (Lei, Ackerson & Tong 2001); however, equivalent
measurements in a turbulent flow field have yet to be made. An important complica-
tion with turbulent flow experiments is that the characteristic length of the clusters
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Figure 1. Schematic of (a) a two-dimensional laser sheet of thickness δ going through a
three-dimensional particle field, and (b) a one-dimensional sampling of the same particles using a
probe of cross-section δ2.

is small, scaling with the Kolmogorov length of the turbulence η = (ν3/ε)1/4, where
ν is the kinematic viscosity of the fluid and ε is the turbulent energy dissipation
rate per unit mass. This dimension can be fractions of a millimetre or smaller in
gas flows (including atmospheric conditions) making the imaging of these clusters a
challenge. A second complication is that three-dimensional particle imaging is both
technically challenging and costly, and therefore is not widely available (see for ex-
ample Zhang, Tao & Katz 1997; Pu & Meng 2000). Consequently, particle positions
are often obtained from lower-dimensional sampling of the system. Figure 1 shows
two examples. In the first experiment, a laser sheet of thickness δ is used to illuminate
a two-dimensional slice through the particle field. A charged coupled device (CCD)
camera oriented perpendicularly to the incident light can then record the (x, y) posi-
tions of the particles that are illuminated. A second approach, shown schematically
in figure 1(b), is to sample particle positions along a linear trajectory through the
particle field with a probe of cross-section defined as δ2. An important example of
this is the forward scatter spectrometer probe (FSSP) used by cloud physicists to
measure distributions of cloud droplets (Baker 1992). A higher-speed version of the
probe (Fast FSSP) has lead to more refined measurements and analysis (Brenguier et
al. 1998; Kostinski & Shaw 2001).

We will show that one- or two-dimensional sampling of the data (even in the absence
of experimental error) yields a distribution function that is fundamentally different
than the three-dimensional distribution function. Moreover, the discrepancy is espe-
cially pronounced at small separations, which is the range of greatest significance to
collision processes (Reade & Collins 2000a; Wang et al. 2000). In § 2 of this paper,
we derive the forward relationships between the intrinsic three-dimensional RDF (re-
ferred to as g3D(r)) and the RDF obtained by sampling the particle field with either a
two-dimensional laser sheet (g2D(r)) or a one-dimensional sampling probe (g1D(r)). The
second part of the paper (§ 3) describes ways to make the inverse problem (i.e. calcu-
lating g3D(r) from either g2D(r) or g1D(r)) well posed and shows how to regress lower-
dimensional measurements to obtain g3D(r) for the specific case of a turbulent aerosol.

2. Forward relationships
The three-dimensional radial distribution function for a statistically isotropic system

of identical particles is defined as the ratio of the number of particle pairs found at
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a given separation distance to the expected number if the particles were uniformly
distributed (here ‘uniformly distributed’ means the probability of finding a given
particle at a location in space is independent of the positions of the other particles;
see McQuarrie 1976). Given the three-dimensional positions of N identical particles,
this quantity can be calculated by binning all of the particle pairs according to their
separation distances and calculating

g3D(ri) =
Pi/Vi

P/V
, (2.1)

where P ≡ N(N− 1)/2 is the total number of particle pairs, Pi is the number of pairs
with separation distances between ri−∆r/2 and ri+∆r/2, V is the total volume of the
system and Vi ≡ 4

3
π[(ri + ∆r/2)3 − (ri − ∆r/2)3] is the volume of the shell associated

with the nominal separation distance ri.
As noted above, measuring the three-dimensional position of particles in a volume

involves technology that is still under development. In the meantime, experiments
can be done by imaging a two-dimensional plane of particles (see figure 1(a)). The
resulting (x, y) data can be binned according to particle separation distances, yielding
a two-dimensional RDF defined as

g2D(ri) ≡ P̃i/Ai

P̃ /A
, (2.2)

where P̃ is the total number of particle pairs in the slice, P̃i is the number of pairs
with separation distances between ri − ∆r/2 and ri + ∆r/2, A is the total area of the
slice and Ai ≡ π[(ri + ∆r/2)2− (ri−∆r/2)2] is the area of the shell associated with the
nominal separation distance ri. Likewise, data obtained by sampling particle positions
along a linear path through the particle field can be binned according to separation
distance, yielding a one-dimensional RDF defined as

g1D(ri) ≡ P̂i/Li

P̂ /L
, (2.3)

where P̂ is the total number of particle pairs in a particular sweep, P̂i is the number
of pairs with separation distances between ri − ∆r/2 and ri + ∆r/2, L is the total
length of the sample, and Li ≡ ∆r is the length of the shell.

Figure 2(a) shows typical results for g3D(r), g2D(r) and g1D(r) taken from a single
realization of a direct numerical simulation (DNS) of finite-inertia particles that
neglected gravititational settling (see Reade & Collins 2000a for details). The two-
dimensional function, g2D(r), was calculated by cutting the DNS volume into 256
slices of equal thickness and computing the RDF according to (2.2), while the
one-dimensional function was calculated by cutting the same DNS volume into
2562 columns and computing the RDF according to (2.3). Notice that the lower-
dimensional RDFs show attenuation at small separations. The dependence of g2D(r)
on the size of the slices is shown in figure 2(b). The degree of attenuation increases
with increasing slice thickness.

2.1. Two-dimensional relationship

To derive a relationship between g3D(r/η) and g2D(r/η), we must consider the infor-
mation that is lost in compressing the three-dimensional data into two dimensions. If
we imagine an axis centred on a given test particle within the slice, then the particles
that will be counted as lying within the cross-sectional area Ai actually lie within
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Figure 2. (a) Comparison of the three-dimensional, two-dimensional and one-dimensional RDF
obtained from a single realization of a DNS with δ/η = 0.64. (b) three-dimensional and
two-dimensional RDFs for several δ/η, as indicated.

the control volume depicted in figure 3(a). Notice that this control volume is not
the spherical shell volume denoted by Vi, but rather an annular volume defined as
Ṽi ≡ Aiδ. Furthermore, the true separation distance between the test particle and
particles lying within this volume will vary by more than just ∆r. Consequently, the
expected number of particle pairs must be obtained by integrating g3D(r) over the
volume (McQuarrie 1976)

P̃i =
P

V

∫ δ

0

∫ ri+∆r/2

ri−∆r/2

g3D(
√
r2 + (z − z0)2) 2πr dr dz,

where the centre of the test particle is defined as (0, 0, z0). Ideally one would like to
have δ/η � 1. However, laser optics and sampling requirements limit the laser sheet
thickness to δ ≈ 1 mm (with≈ 3% variation across the measurement volume, H. Meng
2002, private communication), and the Fast FSSP to approximately 0.1 mm (Chaumat
& Brenguier 2001), implying 0.1 < δ/η < 10, where the low end corresponds to the
Fast FSSP and the high end to the two-dimensional laser measurement. It is desirable
to obtain the RDF down to near particle contact for accurate prediction of the
turbulent collision rate (Wang et al. 2000). In many applications where clustering is
important (e.g. clouds), the particle diameter is much smaller than the Kolmogorov
scale, implying ∆r/η � 1 (often below 10−2). Experimentally this poses no problem
since ∆r can be made arbitrarily small (assuming a sufficient sample size); however, this
does imply that ∆r/δ � 1 in most applications, which has important consequences
for the analysis of the data. Under this circumstance, we can evaluate the radial
integral approximately, yielding

P̃i ≈ PAi

V

∫ δ

0

g3D(
√
ri2 + (z − z0)2) dz.

Substituting the above expression into (2.2) yields

g2D(ri; z0, δ) =
1

δ

∫ δ

0

g3D(
√
ri2 + (z − z0)2) dz,
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Figure 3. Schematic of the control volume of particles sampled around a given particle for
(a) two-dimensional slice and (b) one-dimensional column of particle data.

where we have assumed that the slice volume Aδ is sufficiently large that the expected
number of pairs in the slice has converged to the volume average, i.e. P̃ = PAδ/V .
This expression is for a specific location of the test particle; however, since all axial
locations are equally probable we can average the above uniformly over all z0 to
obtain

g2D(ri; δ) =
1

δ2

∫ δ

0

∫ δ

0

g3D(
√
ri2 + (z − z0)2) dz dz0.

Finally, the double integral can be reduced to a single integral by recognizing that
diagonal lines on the (z, z0)-plane represent constant values of the integrand. Defining
v ≡ (z− z0)/δ and εi ≡ ri/δ as the dimensionless separation distance, we arrive at the
final expression

g2D(εi) = 2

∫ 1

0

(1− v)g3D(
√
εi2 + v2) dv. (2.4)

2.2. One-dimensional relationship

The development for one-dimensional sampling follows by analogy. The equivalent
control volume for the one-dimensional sampling is depicted in figure 3(b), where
the sample volume of interest is again not Vi but V̂i ≡ δ2∆r. Following the same
procedure outlined above, we obtain

g1D(ri; x0, y0, δ) =
1

δ2

∫ δ

0

∫ δ

0

g3D(
√
ri2 + (x− x0)2 + (y − y0)2) dx dy,

where (x0, y0) is the location of the test particle. Once again, as all positions on the
(x0, y0)-plane are equally probable, we can average the result uniformly, to give

g1D(ri; δ) =
1

δ4

∫ δ

0

∫ δ

0

∫ δ

0

∫ δ

0

g3D(
√
ri2 + (x− x0)2 + (y − y0)2) dx dy dx0 dy0.

Making the substitution used earlier in the two-dimensional analysis yields

g1D(εi) = 4

∫ 1

0

∫ 1

0

(1− v)(1− w)g3D(
√
εi2 + v2 + w2) dv dw, (2.5)

where v ≡ (x − x0)/δ, w ≡ (y − y0)/δ and again εi ≡ ri/δ. The integration over
the (v, w)-plane in (2.5) can be reduced further by rewriting it in polar coordinates,
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Figure 4. Comparison of the prediction for g2D(r) with DNS slice data for (a) St = 0.7 and
(b) St = 0.4, and the prediction for g1D(r) with DNS column data for (c) St = 0.7 and (d ) St = 0.4.

replacing dv dw by `dθ d` and performing the integration in θ analytically

g1D(εi) =

∫ √2

0

f(`)g3D(
√
εi2 + `2) `d`, (2.6)

where

f(`) = 4

{
1
2
π− 2`+ 1

2
`2, 0 6 ` 6 1

1
2
π− 1− 1

2
`2 + 2

√
`2 − 1− 2 tan−1

√
`2 − 1, 1 < ` 6

√
2.

2.3. Comparison with DNS

The relationships derived in the previous two sections are tested using DNS data
corresponding to particle Stokes numbers (defined as the ratio of the particle response
time to the Kolmogorov time) of 0.7 and 0.4. Figure 4 shows a comparison between
g2D(r) and g1D(r) obtained directly from the DNS with the functions obtained by
numerically evaluating the right-hand side of (2.4) and (2.6) using g3D(r) taken from
the DNS. The agreement for both g2D(r) and g1D(r) is well within the statistical error
of the data, confirming both relationships.



Relationship between the intrinsic RDF and lower-dimensional measurements 99

3. Inverse relationships
The goal of experiments is to evaluate the three-dimensional RDF; however,

because the relationships between it and its lower-dimensional counterparts involve
integrals, the inverse problem is not well posed without making assumptions about
the form of g3D(r). Previous numerical (Reade & Collins 2000a) and theoretical
(Balkovsky, Falkovich & Fouxon 2001) works suggest a power law of the form

g3D(r) ≈ c0

(η
r

)c1

, (3.1)

where c0 and c1 are parameters.

3.1. Two-dimensional inverse calculation

If we substitute (3.1) into (2.4), rearrange and integrate, we obtain

g2D(ε) = 2c0

(η
δ

)c1

[
2F1

(
1
2
, 1

2
c1,

3
2
,−1/ε2

)
εc1

− (ε2)1−c1/2 − (1 + ε2)1−c1/2

(c1 − 2)

]
, (3.2)

where 2F1(a, b, c, d) is the Gauss hypergeometric function (Abramowitz & Stegun
1964). It is useful to consider the asymptotic behaviour of (3.2) for small r

lim
r→0

g2D = c̃0

(η
r

)c̃1

+ Ã+ O

(
r

η

)2

, (3.3)

where c̃1 ≡ c1 − 1 and c̃0 and Ã are coefficients that depend upon c0, c1 and δ/η. The
result is reminiscent of the so-called ‘additive law’ for fractals, which states that the
dimension of the intersection between a fractal object in three-dimensional space and
a two-dimensional plane is one less than the fractal dimension of the original object
(see Sreenivasan 1991, p. 545). However, in this case 0 6 c1 6 1 and so c̃1 < 0, which
causes the leading-order terms in the expansion to reverse and g2D → Ã. Nevertheless,
the ‘additive law’ seems to apply for the RDF as well.

Because the limiting behaviour of g2D is not a simple power law, it is more accurate
to regress the coefficients c0 and c1 from (3.2) directly. This can be expressed in terms
of a nonlinear minimization of the residual error, R(c1), defined as

R(c1) ≡
M∑
i=1

[g2Di − c0g̃2D(εi)]
2 where c0 =

M∑
i=1

g̃2D(εi)g2Di

M∑
i=1

g̃2D(εi)
2

, (3.4)

M is the number of experimental points to be regressed, g2Di is the experimental
value at a separation distance εi, g̃2D(εi) ≡ g2D(εi)/c0 is the value obtained from (3.2)
without the prefactor c0. Note that because we assume a power law for g3D(r), the
curve fit should be done over a range ε 6 ε∗ that is suitably small such that this
assumption is valid.

To test the concept, we used the nonlinear optimization routine brent.f from Press
et al. (1992) to regress g2D(ε) obtained from the two DNS runs shown earlier (see
figure 4). A summary of the results is given in table 1. Overall, the percent errors in c0

and c1 are reasonable (e.g. for almost all of the cases the errors are at or below 10%).
Notice that the results improve with decreasing δ/η (i.e. decreasing thickness of the
slice) as would be expected. The behaviour with ε∗ is somewhat more complicated due
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St = 0.7 St = 0.4

Run ε∗ δ/η c0 err c1 err δ/η c0 err c1 err

1 0.2 0.64 8.28 3.27 0.735 2.26 1.23 5.43 8.43 0.758 9.22
2 0.5 0.64 8.08 5.61 0.745 0.931 1.23 5.60 5.56 0.741 6.77
3 1.0 0.64 7.94 7.24 0.753 0.133 1.23 5.69 4.05 0.730 5.19
4 5.0 0.64 7.77 9.23 0.765 1.73 1.23 5.92 0.169 0.694 0.00

5 0.2 1.28 7.65 10.6 0.777 3.32 2.45 5.77 2.70 0.750 8.07
6 0.5 1.28 7.77 9.23 0.768 2.13 2.45 5.87 1.01 0.732 5.48
7 1.0 1.28 7.76 9.35 0.769 2.26 2.45 5.94 0.169 0.717 3.31
8 5.0 1.28 7.75 9.46 0.769 2.26 2.45 6.07 2.36 0.656 5.48

9 0.2 2.56 7.64 10.7 0.784 4.26 4.90 6.12 3.20 0.618 11.0
10 0.5 2.56 7.72 9.81 0.773 2.79 4.90 6.01 1.35 0.650 6.34
11 1.0 2.56 7.73 9.70 0.771 2.53 4.90 6.01 1.35 0.654 5.76
12 5.0 2.56 7.80 8.88 0.755 0.399 4.90 5.81 2.02 0.573 17.4

Table 1. Values of the coefficients c0 and c1 obtained for the St = 0.7 case (left) and St = 0.4 case
(right) by curve fitting g2D(ε) over the range ε 6 ε∗. The terms marked err show the percentage
errors in c0 and c1 compared to the value obtained directly from g3D(r/η).

to competing effects. As this parameter decreases, the power-law assumption improves,
but the statistical error increases due to the decreasing sample size. Consequently, the
trend with ε∗ depends on which of these errors is more important. In general, the
goal is to reduce ε∗ to the point where statistical errors begin to become important.

3.2. One-dimensional inverse calculation

We can write a similar function for g1D(ε) by substituting (3.1) into (2.5). After
expanding the integrand and taking advantage of the symmetries, we obtain

g1D(ε) = 4c0

(η
δ

)c1

[I1(ε; c1)− 2I2(ε; c1) + I3(ε; c1)], (3.5)

where

I1(ε; c1) =

∫ 1

0

2F1

(
1
2
, 1

2
c1,

3
2
,−1/(w2 + ε2)

)
(w2 + ε2)c1/2

dw, (3.6)

I2(ε; c1) =
1

2− c1

[(1 + ε2)1−c1/2
2F1(

1
2
,−1 + 1

2
c1,

3
2
,−1/(1 + ε2))

−ε2−c1
2F1(

1
2
,−1 + 1

2
c1,

3
2
,−1/ε2)], (3.7)

I3(ε; c1) =
(2 + ε2)2−c1/2 − 2(1 + ε2)2−c1/2 + ε4−c1

(2− c1)(4− c1)
. (3.8)

Note that I1(ε; c1) cannot be integrated analytically and therefore was evaluated
numerically using Simpson’s rule. The asymptotic behaviour of g1D for small r is

lim
r→0

g1D = ĉ0

(η
r

)ĉ1

+ Â, (3.9)

where ĉ1 ≡ c1 − 2, and ĉ0 and Â are coefficients that depend on c0, c1 and δ/η.
Once again, ĉ1 is consistent with the ‘additive law’ for a three-dimensional fractal,
now intersected by a line (Sreenivasan 1991). Furthermore, realistic values for c1 yield
ĉ1 < 0, causing g1D → Â (a constant) in the limit r → 0, as was seen earlier for g2D.
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St = 0.7 St = 0.4

Run ε∗ δ/η c0 err c1 err δ/η c0 err c1 err

1 1.0 0.64 9.70 13.3 0.601 20.1 1.23 6.40 7.93 0.484 30.3
2 5.0 0.64 8.54 0.234 0.773 2.79 1.23 6.25 5.40 0.560 19.3
3 10.0 0.64 8.33 2.69 0.752 0.00 1.23 6.25 5.40 0.564 18.7
4 20.0 0.64 8.29 3.15 0.758 0.798 1.23 6.23 5.06 0.548 21.0

5 1.0 1.28 8.92 4.21 0.589 21.7 2.45 5.84 1.52 0.479 31.0
6 5.0 1.28 8.53 0.350 0.713 5.19 2.45 5.93 0.00 0.520 25.1
7 10.0 1.28 8.53 0.350 0.733 2.53 2.45 5.89 0.675 0.510 26.5
8 20.0 1.28 8.53 0.350 0.726 3.46 2.45 5.70 3.88 0.478 31.1

9 1.0 2.56 8.02 6.31 0.578 23.1 4.90 5.18 12.6 0.439 36.7
10 5.0 2.56 8.28 3.27 0.680 9.57 4.90 5.26 11.3 0.456 34.3
11 10.0 2.56 8.27 3.39 0.679 9.71 4.90 5.03 15.2 0.428 38.3
12 20.0 2.56 8.06 5.84 0.645 14.2 4.90 4.63 21.9 0.383 44.8

Table 2. Values of the coefficients c0 and c1 obtained for the St = 0.7 case (left) and St = 0.4
case (right) by curve fitting g1D(r/η) at values of r/δ below ε∗. The terms marked err show the
percentage errors in c0 and c1 compared to the value obtained directly from g3D(r/η).

We applied the same regression procedure to the g1D(ε) data obtained from DNS.
Table 2 shows a summary of the results for St = 0.7 and St = 0.4. Notice that we
increased the range of ε∗ relative to the two-dimensional case. This was done to
reduce (somewhat) the errors in the regressed values of c0 and c1. However, despite
the adjustment, the errors are found to be considerably larger than for the two-
dimensional regression. Some insight into the origin of the problem can be found
by considering g1D(r/η) shown in figure 2(a). At small r/η (corresponding to small
ε in the regression analysis), the slope is more shallow than for the two-dimensional
RDF. Consequently, the regression of the parameters c0 and c1 is more susceptible
to statistical errors in the distribution. This can be seen by comparing the errors in
the St = 0.7 and St = 0.4 data. In both analyses, the error in the St = 0.4 data was
greater than for the St = 0.7 data; however, the adverse effect of this error on the
estimate for c1 was substantially greater for the one-dimensional analysis than for
the two-dimensional analysis (see for example the err column for c1 in tables 1 and
2 under St = 0.4).

The problem appears to be inherent to the 1D RDF, which by definition has lost
information along two axes of the measurement (instead of one). The lost information
causes g1D(ε) to be relatively flat over the range of ε where the power-law assumption
applies. This can only be mitigated to some extent by minimizing the statistical error
of the data (i.e. increasing the data size).

4. Conclusions
In this paper, we derived relationships between the three-dimensional RDF and

the two- and one-dimensional functions obtained from lower-dimensional sampling
of the data. Lower-dimensional RDFs were attenuated at separations below the
characteristic length of the measurement (defined as δ in our nomenclature). Forward
relationships for g2D and g1D were derived exactly in terms of weighted integrals of
g3D (see (2.4) and (2.6)). It must be emphasized that these relationships only assume
that the particle field is isotropic, but are otherwise general. In contrast, the inverse
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relationships for g3D in terms of g2D or g1D are not well posed without assuming
a functional form for g3D. Here, we showed the inverse relationships assuming a
power-law – a good approximation for aerosol particles in turbulence. We observed
that the exponent for the ‘leading-order’ term for g2D and g1D obeyed the so-called
additive law; however, this could not be fully exploited because realistic values for
c1 caused a re-ordering of the terms that disrupted the power-law behaviour for g2D

and g1D. We therefore proposed an alternative algorithm to regress c0 and c1 based
on the full expressions for g2D and g1D (see (3.2) and (3.5) and related discussion).

The results of this study have important implications for interpreting experimental
measurements of droplet clustering, including measurements made in clouds. Even
neglecting the errors associated with the measurement (see the discussion of errors
in Kostinski & Shaw 2001), we have shown that the RDF obtained directly from
the data is much smaller than the three-dimensional RDF. The debate about the
importance of droplet clustering in the evolution of clouds would therefore benefit
from an analysis of the data that takes advantage of (3.5) to obtain an approximation
for the intrinsic function g3D(r).
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